Flight stabilization control of a hovering model insect.
نویسندگان
چکیده
The longitudinal stabilization control of a hovering model insect was studied using the method of computational fluid dynamics to compute the stability and control derivatives, and the techniques of eigenvalue and eigenvector analysis and modal decomposition, for solving the equations of motion (morphological and certain kinematical data of hoverflies were used for the model insect). The model insect has the same three natural modes of motion as those reported recently for a hovering bumblebee: one unstable oscillatory mode, one stable fast subsidence mode and one stable slow subsidence mode. Controllability analysis shows that although unstable, the flight is controllable. For stable hovering, the unstable oscillatory mode needs to be stabilized and the slow subsidence mode needs stability augmentation. The former can be accomplished by feeding back pitch attitude, pitch rate and horizontal velocity to produce delta[symbol: see text] or deltaalpha(2); the latter by feeding back vertical velocity to produce deltaPhi or deltaalpha(1) (deltaPhi, delta[symbol: see text], deltaalpha(1) and deltaalpha(2) denote control inputs: deltaPhi and delta[symbol: see text] represent changes in stroke amplitude and mean stroke angle, respectively; deltaalpha(1) represents an equal change whilst deltaalpha(2) a differential change in the geometrical angles of attack of the downstroke and upstroke).
منابع مشابه
Hovering Flight for a Micromechanical Flying Insect: Modeling and Robust Control Synthesis
This paper describes recent results on the design and simulation of a flight control strategy for the Micromechanical Flying Insect (MFI), a 10-25mm (wingtipto-wingtip) device capable of sustained autonomous flight. Biologically inspired by the real insect’s flight maneuver, position control is achieved via attitude control. The wings motion is parameterized by a small set of parameters which a...
متن کاملNumerical Study of Flapping-Wing Flight of Hummingbird Hawkmoth during Hovering: Longitudinal Dynamics
Abstract—In recent decades, flapping wing aerodynamics has attracted great interest. Understanding the physics of biological flyers such as birds and insects can help improve the performance of micro air vehicles. The present research focuses on the aerodynamics of insect-like flapping wing flight with the approach of numerical computation. Insect model of hawkmoth is adopted in the numerical s...
متن کاملFloquet stability analysis of the longitudinal dynamics of two hovering model insects.
Because of the periodically varying aerodynamic and inertial forces of the flapping wings, a hovering or constant-speed flying insect is a cyclically forcing system, and, generally, the flight is not in a fixed-point equilibrium, but in a cyclic-motion equilibrium. Current stability theory of insect flight is based on the averaged model and treats the flight as a fixed-point equilibrium. In the...
متن کاملUntethered Hovering Flapping Flight of a 3D-Printed Mechanical Insect
This project focuses on developing a flapping-wing hovering insect using 3D-printed wings and mechanical parts. The use of 3D printing technology has greatly expanded the possibilities for wing design, allowing wing shapes to replicate those of real insects or virtually any other shape. It has also reduced the time of a wing design cycle to a matter of minutes. An ornithopter with a mass of 3.8...
متن کاملMotion Control of TUAV having Eight Rotors for Enhanced Situational Awareness
This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for tactical unmanned aerial vehicle (TUAV). With the SA strategy, we proposed a two stage flight control procedure using two autonomous control subsystems to address the dynamics variation and performance requirement difference in initial and final stages of flight trajectory...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 210 Pt 15 شماره
صفحات -
تاریخ انتشار 2007